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SUMMARY

The equations of relative motion with impulsive velocity changes

are solved for rendezvous with a target in a circular orbit and for

motion near the apsis of any conic target orbit. The maneuver times

associated with least-fuel interception; least-fuel rendezvous_ and

least-energy rendezvous are determined from the solutions. The velocity

impulse requirement for least-fuel interception i._ relatively distinct;

however; that for least-fuel rendezvous is not. For this reason; often

the time required for a renlezvous maneuver may be shortened signifi-

cantly from that for least fuel without incurring a significant fuel

penalty. It is shown that an economical rendezvous depends not only

upon the time that is taken for the rendezvous maneuver from the posi-

tion at which it is initiated; but in addition_ it depends on the selec-

tion of the position in the uncorrected relative motion. From these

considerations a guidance logic for economical rendezvous is evolved.

This system is a multi-impulse scheme depending on a priori knowledge

of the target orbit parameters and the measurement of the relative

range and relative velocity vectors following tar{et acquisition. The

guidance logic permits an optimum position of initiation of the ren-

dezvous maneuver to be determined. It is shown that the penalty for

commencing a rendezvous maneuver at a position si_nificantly different

from the optimum position m_y be substantial.

INTRODUCTION

During the past several years_ a number of p¢oposals and studies

have been made of space-directed missions_ manned and unmanned. Many

iPreliminary results of this study were presented by the author in

a paper entitled "Least Fuel, Least Energy_ and Salvo Rendezvous" which

was delivered before the 15th Annual Spring TechnLcal Conference of the

IRE and ARS_ Cincinnati_ Ohio_ April 13_ 1961. _e proceedings of this

conference were not published by the sponsoring societies and the present

report is being released to make the information _)n this study more

generally available.



of these missions have involved, either implicity or explicitly, the
rendezvousing of a maneuverable space vehicle with another orbiting
object. Howeverj a literature search reveals few attempts to study
systematically the problems of the economical rendezvousing of space
vehicles, although the specific problems of optimum interception
(ref. i), target orbital placement (ref. 2), and interceptor orbital
placement (ref. 3) have been studied.

Rendezvous, of course, is an end in itself. But there are two
practical examples of particular interest to space flight, namely,
orbital refueling and orbital parking, in which the advantages of ren-
dezvousing depend upon how cheaply it can be done. Cost is a problem
since rendezvousing can be prohibitively expensive if we try to do
things the wrong way. Suppose, for example_we try to correct an off-
course error in too short a time. Then the fuel requirement can become
an order of magnitude greater than the least-fuel solution to the prob-
lem may have allowed. A similar situation can arise if we try to correct
an off-course error at the wrong position in the relative motion; the

local least-fuel requirement may be an order of magnitude greater than

at the best position.

This paper presents a study of the problem of economical rendezvous

of a maneuvering space vehicle with an orbiting target vehicle. The

principal analysis is based upon a maneuver that is idealized as a set

of impulsive changes in the velocity of the interceptor_ with the target

either in a circular orbit or near an apsis of any conic orbit. The

objectives are to obtain a guidance logic for economical rendezvousing

and to obtain an understanding of the basic analytical features and the

characteristics of a rendezvous maneuver.
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SYMBOLS

D  si alerortermD2Is21s2 U y2

target orbit eccentricity

E
I

error velocity vector in reduced solution_ equal to

minimum-fuel interception velocity
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Ox, Oy, 0z
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T

error velocity in apsidal solution, equal to minimum-fuel

interception velocity

target orbit altitude

direction cosines of the initial rendezvous impulse

direction cosines of the terminal rendezvous impulse

at the interception point

mass of the interceptor

less than the quantity x by at least an order of

magnitude

of the order _f magnitude of the qu_ntity x

orthogonal triad set up with its origin in the target

(The outward radius vector through the target, _o, is

the direction of the y axis, the z axis is per-

pendicular to the plane of the target's motion and has

a positive sense in the direction of _.)

target orbit semilatus rectum

generalized coordinate equal to either x or y

radius vector through the interceptor from the center of
the force field

radius vector of the interceptor at cutoff of booster

radius vector through the target from the center of the
force field

relative range or line of sight vector from the target to

the interceptor

component of the relative velocity vector in the direction

of the line of sight, V sin 7

time

time to the apsis in the target orbit

thrust vector of the interceptor
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velocity of the interceptor at burnout

relative velocity vector of the interceptor with respect

to the target

components of _R in the orthogonal triad

components of _R in the orthogonal triad

angle between the thrust vector and the initial line of

sight vector

angle between relative velocity vector, _R' and the per-

pendicular to the line of sight, _R

sum of the absolute values of the initial and terminal

impulses

sum of the absolute values of the initial and terminal

impulses for a maneuver time corresponding to the least

equivalent energy

total equivalent energy of the rendezvous transfer impulses

sum of the absolute values of the initial and terminal im-

pulses for a maneuver time corresponding to the least-fuel

interception

terminal impulse that must be made to bring the interceptor

and target vehicles to relative rest at the interception

point

initial impulse in velocity of the interceptor that must

be made in order to intercept the target

angular velocity vector of the target orbiting in the cen-

tral force field

scalar magnitude of 2

magnitude of the relative range in the coplanar case,

02 = X 2 + y_

standard deviation of a given quantity, assuming that errors
are distributed in a Gaussian fashion

time taken for a rendezvous maneuver
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time of the Hchman transfer from rL to r o

target orbit true anomaly

mass gravi_at_onal constant of the ::gntral force fie?.d_ GM

rate of change

Subscripts

b

e

I

o

R

i

()

cutoff of booster

equivalent ericrgy

interception

target, or terminal value at the target

relative

initial

vector quantity

ANALYSIS

Equations of Relative Motion

The rendezvous proble_ is defined by the boundary constraints that

the position and velocity of a maneuvering space vehicle and an orbiting

target vehicle are to be mstched. It is assumed that the interceptor

vehicle has been launched _n the general directiom of the target bu_ is

not absolutely on course (see appendix A), so that a corrective maneuver

is necessary to insure an _nterception as indicated schematically in

figure l(a). Further, :it _s assumed the interceptor carries sensors that

will acquire the target at some position along the initial launch path

and measure the quantities needed to evaluate and determine subsequent

maneuvers. Each maneuver _s idealized as a set of impulsive changes in

the velocity of the interceptor.

Let us consider the situation following target acquisition. We

shall use the notation that the angular velocity vector of the orbiting

target is _. The target "sees" the relative range or line of sight

vector, _R' and the relative velocity vector, _R' through the interceptor•
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The radius vector of the interceptor relative to the central force is r.

An orthogonal triad, Ox, Oy, Oz, has its origin in the target, as shown

in figure l(b). The outward radius vector through the target, _o, is

the direction of the y axis. The z axis is perpendicular to the

plane of the target's motion and has a positive sense in the direction

of _. In the triad, _ has the components x, y, z, VR has the

components x, y, z, and _ has the components O, O, w. Since the

target is in a planar forc_ field, _ = (w/w)_, with the components

O, O, w. Oblateness effects are neglected throughout this paper since

they are insignificant to the relative motion but cause small changes in

the magnitudes, w and _, of the absolute motion vectors, _ and _. In a

real situation, the corrected absolute values of these quantities must

be used (see, e.g., ref. 4).

The vector equation of relative motion is now:

+v-R + + + =
dt2 ..... m

The thrust vector, T, is included in the foregoing equation to show

how it enters the equations of motion. One simple result will be obtained,

however, before we set T = 0 and consider only impulsive motion. If we

assume that the target orbit is circular (_Z = O) and take the scalar

product of the vector equation of motion with the relative velocity

vector, VR, we obtain

i d (VR2 + w2z2 w2r2 _ _ ) T dSR2 dt m dt

For the special case of constant thrust, more precisely, when T_/m is a

constant vector, an integral of energy is available in the form:

T 1 2_ + W2ro a + (1)m " sR- 

where the rendezvous end conditions (i.e., VR = 0 and S R = O) have been
impo ted. Since,

r2_ - ro 2 + 2yro + x2 + y2 + z2 = (r ° + y)2 + O(x 2)
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an approximation that is valid when SR < < r o c_n be obtained

• ._: cos_ (s R)__- VR_+_;S (3 - 3Z)

where (_ is the angle between the thrust vector and the initial line of

sight vector_ SR.

To illustrate typical results with this equation, suppose we consider

a situation where SR _ 40 miles, VR _ i000 fps, and w _ lO-S/sec. We

find that (T/m)cos _ _ (I/lO)g. In general, the angle _ will be small

so that (T/m) _ (i/lO)g. For rendezvous with constant thrust, then, it

is indicated that the thrust required is small; for example, if the

interceptor weighs 5000 Ib_ the required thrust level is, for this case,

only 500 lb. Rendezvous with impulsive thrust involves thrust levels

two orders of magnitude greater than this continuous thrust solution

(thrust accelerations of the order of 6 to i0 g delivered for periods of

the order of i to 3 seconds typically). Hence, the character of any

solutions that can be obtained from the continuous thrust problem may

be expected to differ substantially from the impulsive thrust solutions

that we will now proceed to develop.

To obtain the impulsive thrust solutions, we will set

scalar equations of motion are now:

T = O. The

"° _ "

x-2_ _(Y+ro) _x- r_X+;_°

•. _] ..
y+2_+= w_(y+ro)- m (y+ro) ro

z - r3 z

(3)

where the coefficients in these equations may be identified to the target

orbit parameters: e, the eccentricity; v, the true anomaly; p, the semi-

latus rectum; and w o =v_Tp s, through the equations,

w = wo(l + e cos v) 2

= -2W02 e sin v (i + e cos v) s

---_ )--ir o p(l + e cos v

bt __ Wo2( I + v)S{ I y
r--_ e cos + 2 +\ r o

x 2 + y2 + ze_-s/2

/ro 2

(4)
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Circular Target Orbits

Reduced equations of motion.- A variety of restrictions may now be

imposed to yield a tractable problem. First, if the relative range is

small compared to the orbit radius (i.e., SR < < ro) , then terms of order

(y/r o _ may be neglected and r _ ro + y. This assumption leads to the

general first-order problem of relative motion. It does not lend itself

to simple integration except in the case of a circular target orbit.

The solution to this case is derived in appendix B and appears to be too

cumbersome for further direct analysis. However, an inspection of the

table in appendix A leads to the conclusion that practical problems can

occur in which the difference in gravity between target and interceptor,

within the miss-distance sphere of uncertaint_ is less than i percent.

THUS, as an additional assumption, we neglect the change in gravity over

the altitude range of interest such that WoY is; in effect, small

compared to h. With these approximations and if the target orbit is

assumed circular, the equations become simply,

h

2 - 2Wo9 = 0

y + 2Wo_ = 0 (5)
i

+ Wo2Z = 0
Y

and integrate irmmediately to:

,oo _ + _ sin 2Wot 2Wot2Wo - 2_ ° cos

y ho ) #o hov = o 2_o + 2w-_ sin 2Wot + 2Wo-- cos 2Wot

o
z = -- sin Wot + zo cos Wot

w o

(_)

wheretheboundaryconditions,_ = (_o,Yo, Zo),V-S= (£o,2o, _o),
have been applied at t = 0.

Velocity requirements.- From equations (6), the velocity require-

ments of the rendezvous maneuver can be determined. In particular, if

we set x o = Yo = Zo = 0 and compute in negative time, the vector

V_R- = (Xo, #o, Zo) represents the terminal impulse produced by ren-
dezvousing in time -t from the initial position S__R = (x, y, z).

A
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The initial impulse is the difference between the initial velocity

_VRI = (xl, _l, zl) at S__ = (x, y, z), and the velocity needed to

achieve an interception it, time -t, V_R = (h, #, {). The final impulse

then has these components:

Xo x cos Wot - y sin Wot

wo s_n Wot
= -x cot Wo_ - y

Yo x sin wct + y cos Wot

wo s_n Wot
= x - y cot WoT

{o z z

w o sin Wot sin WoT

while the velocity required at -t has these components:

7a)

x cos wot + y sin Wot

w o _in Wot
= -x co_ WoT + y

_ -x sin Wot + y cos Wot

wo sin Wot = -x - y cot WoT

cos Wct
- z - -z cot WoT

wo sin wot

where T = -t.

Equations (Ta) and (_b) may be expressed vectorially:

WoT \
7c)

7d)
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The condition for a collision in time T is equation (7d). For the

target to be intercepted in time _, therefore, a vector impulse change

AV 1 to the initial relative velocity vector _R I must be made, given

by,

Av = _ - _

i_..s-_l -x.0s.: - (__ X S_R) - (wO cot WoT)S_R - 1S 2 _R - S X --S

= _ lWo cot WoT + S) S _ IS-R x V-R0 S-_R"-R (£ × s_) - s ×-g

where S Js the magnitude of the relative range vector, SR , and

is the component of the relative velocity along S__R. This component is

given by S = V sin 7 where _/2 + 7 is the angle between the relative

velocity vector, _R (magnitude V), and the line of sight, SR. Let us

define a vector E iby

_= (n_.x _) + s xw (8)

then E is perpendicular to S_R(_ • SR = 0), does not contain

has a scalar magnitude given by,

• , and

x_

:Wo2(S2- _) 2%(k_y-x_) + v_- _2

_nus, we have a decomposition of

directions, S_R and E:

along the two perpendicular

av = (woScot%_ + _) s_"-if'- E (9a)

with

A

4
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(/W z) 2 = (woS cot WOT + _)2 + E 2 (9b)
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If the two vehicles are already on a collision course_

AV = 0
---i

and the two terms in the orthogonal decomposition must be independently

zero. The first term bein_ zero yields the results:

_l - WoY #i + WoX _i
cot WOT _ -- = =

WoS WoX _oY WoZ

The second term being zero yields, obviously, E = O. This vector

is, in essence, an error w_.locity. As noted, iV is zero if the vehicles

are on a collision course. In addition, the velocity E represents

the least-fuel impulse to effect an interception of the target. This

result can be demonstrated with equations (9) if it is noted that the

time to intercept T is a free variable which may be used to make

woS cot Wo_ + S = O.

The magnitude of the terminal impulse, _ = -_Ro, that must be
made to bring the vehicles to relative rest at the interception point

may be computed from the components of V_Ro given by equations (7a):

(AVo)2 . 2 . 2= Xo + YO2 + _'0
%2(x2 + y2 + z2)

sin 2 WoT

or

%s (lO)
AVo - sin WoT

Minimum fuel and ming_tum energy.- To minimize the fuel expended in

the rendezvous maneuver, it is necessary to minimize the sum of absolute

values of the initial and terminal impulses. We form,

woS= + (w S cot Wo_ + _)2 + E 2
AV = AV 0 + AV I sin WoT
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and note that AV is a function of WoT, the angular rotation of the
target during the maneuver, which wewill call the true rendezvous
anomaly. Let us differentiate with respect to WoT:

_AV WoS cos WoT

_-_ = - sin2 WoT sin 2

(WoS cot WoT + S)WoS

WoT_(woS cot WoT + _)2 + Ee

Stationary values occur whenever

cot WoT cot Wo_ + Wo S

i + cot 2 Wo_ ot WoT + + w° 2 $2

A

4

4

8

that is,

cotw • - s (ll)
o WoS + E

If the true rendezvous anomaly, WoT , is determined from the sta-

tionary value given by equation (ii), then the rendezvous maneuver will

involve the least amount of fuel since

_aAV- rwo 4 84 + Wo 2 S2 E£][d cot (WoT) I

92

L( vo) 7L ) J L d(Wo_)J
>0

at this value of WoT.

In a similar manner, let us consider next the total equivalent

energy of the transfer and form,

(AVe)e = (AVo)2 + (hVl) e

= 2Wo 2 S2 cot 2 WoT + 2woSS cot wT + E£ + _e + w° a S2
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Differentiation with respect to WoT ,

_(AVe)2 (_(WoT) = 4%2 s2 cot Wo_ + 2w o SS)

d cot (Wo_)

d(Wo_)

3

shows that stationary values occur whenever

cot WoT -
2WoS

(12)

and at these stationary values,

cot (WoT) 2

_(%._)2 - 4Wo_s_ d(Wo._) > 0

Thus, equation (12) is tl_e condition for least total energy in rendez-

vousing with the target.

Next, consider the initial impulse AVz only; from equations (9),

it is a minimum when

cot WoT - (13)wS
o

and this is the condition for least fuel to intercept the target. Using

a different formulation :for the problem, Eggleston (ref. i) has obtained

a form of this equation. By comparison with equation (Ii), equation (13)

represents the time to rendezvous with least fuel only in the case

E = 0; that is, when the vehicles are already on a collision course.

This result also shows t}lat if the vehicles are on a collision course,

there is no modification to the interception course that will result in

a fuel saving for the co_lete rendezvous maneuver.

In general, equation (Ii) gives the optim[:m time or true rendez-

vous anomaly for least fuel when there are two impulses, with the first

impulse applied following target acquisition. The magnitude of the

first impulse, AVI, for the optimum angle WoT , is

E J_2 + (woS + E)2
AVz - woS + E

(:z_.)
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to which corresponds a terminal impulse of magnitude

/aVo = Wos + E _2 + (woS + E)2 (15)

so that the total rendezvous impulse, Z_V, is

Av =/s 2 + (woS+

If, instead of the optimum fuel solution, She optimum energy

solution (eq. (12)) is used, then the total impulse is

(16)
A

4
4
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(17)

so that, whenever _2 >> max (E 2, wo2S2), comparison of equations (16)

and (17) gives

(aV)e -my : _ + (woS + E)21+ 2_ "

+ higher order terms

or

(WoS r( oS ,](AV)e - /kV = 2S + 0 [ '_'3 (18)

This result shows that if E is larger than woS 3 but small

compared to S, it may be unnecessary to wait until the optimum time

for least fuel, since for the least-energy rendezvous the additional

fuel penalty is extremely small. For example, if S = 2000 fps,

woS = 200 fps, and E = 400 fps, and the target is in a near-earth

satellite orbit, the cost of a rendezvous in the time for least fuel of

6 minutes is about 2090 fps, and in the least energy time of 4 minutes

the cost is about 2100 fps. However 3 if the rendezvous is made in 2

minutes 3 which is the optimum time for intercept given by the solution

of equation (13)3 the cost is up to 2410 fps, a significant increase.

This increase follows since, if (_V) I is the total impulse when the
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optimum intercept solution is used, the difference between the two
increments is

E2 + 2woSE [(_°si E_
(nV)l - AV : E - 2S + 0 | _s

t

(19)

This equation shows that the two impulses differ by the first-order

term E.

Co_lanar s_ecialization.- The equations describing the rendezvous

maneuvers can be simplified still further if the specialization of

coplanar orbits is considered. This specialization is of some interest.

For example3 many rendezvous maneuvers will be based upon compatible

orbits (ref. 2) which tend to reduce the rendezvous to a coplanar

maneuver. For the coplanar case, _ X_ is parallel to

(VE l x SR ) x SR so that the expression for E 2 reduces tQ a perfect
square:

E2 = (V cos_ - WoP)2

where p2 = x 2 + y2. Equation (ii) now may be restated,

V sin 7 if WoP > V cos 7
cot Wo_ = 2WoP - V cos %

WoT = _/2 + 7 if WoP _ V cos Z
1 (2o)

Usually, the latter case, V cos 7 _ WoP, w_ll be of interest. Then

an economical rendezvous is achieved simply by setting the true rendez-

vous anomaly equal to the angle between the relative range and the

relative velocity. The initial and terminal impulses are of magnitudes,

_V I = (V cos 7 - WoP) sec 7 ; AV o = WoP sec y (21)

respectively, and the total impulse, AV = AV o + AVI, is just the rela-

tive velocity; that is,

AV : V (22)
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Navigation considerations.- For navigation purposes_ it is necessary

to know both the magnitude and the direction of the velocity impulses

required. The direction cosines of the impu!ses_ _ m, n initially

and _ mo_ no at interception_ are

m

n

Wo
m m

cot WoX +
WoX

-i 0

i cot WoT + _ 0
WoY

0 0 cot WoT +
w o z

x

y (23)

z

. °

A
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and

wo

tool --
AV o

n_

I 0

cot WoT 0

0 0 _i + cot2Wo_

7

x'

Y (24)

I

I
z

In the coplanar problem with WoP _ V cos 7, the least-fuel solution

corresponds to cot WoT = -tan 7 so that _i + cot2wo _ = sec 7 and

the transforming matrices above are especially simple.

It is not the intention here to deliberate upon the manner by which

the target intelligence is obtained or upon the transformations that are

needed to orient the problem in terms of the interceptor's coordinate

reference system. However, it would appear that the quantities needed

to evaluate and determine the rendezvous maneuvers subsequent to target

acquisition can be obtained readily. Thus, the vector _ would be

predetermined based upon an accurate target ephemeris_ and stored in the

interceptor's inertial guidance system. The magnitude of the relative

rangej S3 and the range rate_ S = V sin 7_ could be obtained by an

on-board precision Doppler radar_ and the direction fixed by optical

means. There remain the components of relative velocity perpendicular
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to the relative range_ S_. These could be obtained by measuring the

rate of change of directzon of the relative range vector immediately

following target acquisition.

Noncircular Target Orbits

The foregoing analysi_ is restricted to circular target orbits. In

the following section_ thi_ restriction will be dropped. In addition_

it was assumed early in the previous analysis that gravity _s constant

over the altitude range of interest (in particular, that WoY << x).

Although this assumption i_ necessary to this ana]ysis_ it is not

essential to a closed solu1_ion to the motion for a circular target orbit

(e.g., ref. i). This assl_ption will not be made in the more compre-

hensive solution now to be developed. This solution is reduced to the

circular case in appendix _.

Although the target orbits now considered are noncircularj some

simplifications of the orbit equations are possible. For example_ it

has been shown in referenc_ 3 that a necessary condition for rendez-

vous with a minimum expenditure of fuel_ when the interceptor is

launched from the surface of the planet_ is that the rendezvous should

occur at an apsis of the target's elliptical orbit. If the target orbit

is an open conic_ it can be shown that rendezvous should take place at

the target periapsis and a_ near the periapsis of the interceptor's

trajectory as optimum burnout altitude considerations will allow. There-

fore_ if the target orbit is a conic_ we shall set the constraint upon

the motion that the rendezvous maneuvers be in t1_e vicinity of an apsis.

We will consider the true anomaly_ v_ is small such that cos v = i

and sin v = v . These api_roximations are valid near periapsis and we

will make them valid near apoapsis of an elliptical target orbit by

measuring v from this point and taking the eccentricity e as

negative under this conditSon. The equations of motion are then:

x" - 2wo(l + e)2_._ + 2Wo2(i + e)3evy - wo2e(l + e)Sx = 0

+ 2wo(l + e)2x 2wo2(i + e)Sevx - Wo2(3 + e)(l + e)3y = 0

z"+ Wo2(Z + e)Sz = o

(25)

v_ere

v = Wo(l + e)2(t - to) + 0(t - to) 2
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with to the time to the apsis in the target orbit. Terms of order

Wo2X 2 have been neglected. If now terms of order Wo2VX may be

neglected also_ the equations integrate immediately to:

q = eWlT q ew2T + Bq e-W2 + e -wzT q ew2T + Dq e (26)

where

q=xory

Z _ --

_o sin Wz_

w Z

[_e(3 + e)wz2 = Wz2 2

Wz2 = Wo2 (l + e)3

2Aq: - (Xq pq) _-o+

2_q =- (_,q+ pq)_-o -o:_

(27a)

w22 =-Wz2[ _e(3 + e) + 1+2 "-_ 2el

(2To)
(2_rc)

2c = O,q + pq) qo - o_ (27d)q

2Dq = (_q - pq) qo + _Qo (27e)

A
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Qo = complement of qo =

W z _-_+ e

CZ =

2wlw2

l+v_
hq = 4w I

+y if q _ x (27f)-x if q _ y

Pq - 4 w2

-l+ V_q

(27g)

(27h)

_x- 3 + e _y_ e (27i)e 3+e

The computation has been carried out in negative, time T =-t with the

boundary conditions _R = O_ O_ O_ _Ro = Xo_ Yo_ Zo_ applied at t = O.
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The vector VR(x, y, z) is the required initial velocity at the

position SR(X , y_ z) in order to intercept the target in time _, and

the vector- V_Ro(Xo, Yo, Zo) is the terminal impulse needed to bring the

vehicles to relative rest at the intercept position, that is, to complete

the rendezvous. The velocity components are related to the space

coordinates by

I •

iXo
!

• = p-i
Yo

zo

X l
i

zI

x
i

= _y y (28)

. .J

where the matrix P is defined by equations (26) and (27)• We find that

p-lA = _

axx -axy 0

axy ayy C

0 0 -WzA cosec WzT

where

axx = (_ + py) sinh (wI - w2) T + (_- py) sinh (wI + w2)T

axy=_ [_osh(w_-w_)_- oos_ (w_+ w_)_]

= (_ + Px)sin_ (,.q- w_)_ + (_'x _) _irm(w_.+ w_)_

2 + Sx + _y 2 - _x - _y

A = 4w12 sinh 2 WlT+ sinh 2 w2 T4 W22
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dP

dt

bxx bxy

-bxy byy

0 0

0

0

-COS WZT

where

bqq= (_q+ pq)(w -w 2) cosh (w -w2)_

+ (_q - pq)(w_+ w2) cosh (w_+ w2)_

q=xory

bxy = _ [(wI - w2)sinh (wI - w2)T- (wl + wa) sinh (wl + we)_ ]

Since we are concerned with small motion near an apsis, the

intractable expressions for the magnitudes of the impulses that result

from equation (28) may be replaced by the initial terms of their ex-

pansions in terms of Wzr . After some manipulation, we obtain:

(_Vo)== (wzScosecwz_)_- Wz_y2+ 0 (Wz_)

(_V_)_--(wzScotWz_ + S)_ + _ + 0 (Wz_) 1(29)

where it can be shown that

A

4
4
8

F2 :_ +Wz2_ >_ o

Clearly, the velocity impulse to intercept the target, AV3 is

minimized by choice of

cot Wz_ : - Wz--_ (30)

which is identical to equation (13) with w z replacing w o.
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Previously_ we called the quantityj

2 2

the equivalent energy of the transfer impulses. It has a minimumwhen

(31)
cot Wz_= 2wzS

which is identical to equation (12) with wz replacing wo.

Next_ let us form the total impulse_ _V = _Vo + _Vl_ which is a
measureof the fuel consumedin the rendezvous:

f_V= J(wzS cosec WzT_ - WzY2 2 + J(wzS cot WzT + S_ + F 2

Differentiation with respect to Wz T with the dividend set to zero gives

(32)
cot WzT = wzS + D

where

as the condition for least fuel to rendezvous.

to equation (ii) for the circular case, with

This equation is similar

E replaced by,

D=E

E

(VO
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Under the least-fuel condition (eq. (32)), the total impulse, AV,

has a value given by

CVw s )my: 2+ - Wz y + F (33)

Equations (28), (29), (32), and (33) provide the information needed

to navigate a least-fuel rendezvous based upon two impulses# with the

first impulse applied following target acquisition, and the target orbit

either circular or near an apsis of any conic orbit.

RESULTS AND DISCUSSION

A

4
4
8

With the mathematics of the rendezvous problem developed, it is now

appropriate to discuss some of the implications of the results obtained.

Many features of the rendezvous problem can be illustrated with the simple

case of a circular target orbit and a coplanar interceptor. An example

of this type has been examined for the conditions of a target in a 1000-

mile orbit# a separation at time of first impulse of 40 miles_ and a

relative velocity at this time of 1350 feet per second. The various

velocity impulses associated with rendezvous for these conditions are

shown as a function of time to rendezvous in figure 2. The initial

impulse, AVI, the terminal impulse# AVo, their total, AV_ and the

equivalent energy impulse AV e are all presented# and the minimum

values are indicated with arrows on the curves. The initial impulse_

AVI, which is also that required to intercept# has a very pronounced
minimum. This result is a general characteristic; no matter what the

initial conditions of the relative motion, there is a distinct optimum

time to intercept. If we deviate too much on either side of that

optimum, we will pay a considerable penalty in total velocity and, hence#

in total fuel requirement. The terminal velocity curve, AVo, is

approximately a simple rectangular hyperbola, so that the total velocity

impulse requirement, _V, has a minimum displaced from that of AV I to a
later time. In this case# the minimum is 1350 feet per second, equal to

the initial relative velocity. The minimum is fairly shallow in typical

situations, and if it occurs at a time very much in excess of the time

for the minimization of the equivalent energy of the maneuver, AVe, it
is generally unnecessary to wait for the fuel minimum. A rendezvous

maneuver that takes a time equal to the minimization time for AV e
will in these cases consume very little fuel in excess of the true mini-

mum fuel requirement. Hence# an economical rendezvous can often be

achieved in a time that is not less than the time for least-fuel inter-

ception, and not more than the time for least-equivalent energy rendezvous,
about twice the least intercept time.
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The results presented in figure 2 illustrate the cost of a rendezvous
maneuver for fixed initial conditions and thus for a fixed time for in-
itiation of the maneuver. It is apparent that in the interests of
econonkvthere will be occasions whenit will be advantageous to wait
before starting the maneuver. Consider, for example, a typical rendez-
vous situation. The interceptor is launched to burnout at the periapsis
of a transfer ellipse and then, in the ideal case, coasts toward an
apoapsis cotangential with the target in its orbit. Supposeagain, that
the target orbit is circular and that the ideal interceptor orbit is
coplanar with it. It can be proved that the magnitude of the relative
velocity vector, V, is a minimumat the cotangential transfer point.
Nowlet us refer to equation (22)_ which is valid for this special case,
with the assumption that woY_ x. The cost of the rendezvous ma-
neuver is, by this equation, the relative velocity. Thus, whenwe are
off course, the rendezvous initial impulse is applied at the best possible
position in the uncorrected relative motion if it is called for whenthe
relative velocity, V, is a minimum. In this simple case, provided we wish
to rendezvous with the target rather than merely intercept it, the rela-
tive velocity is a more useful quantity than the error velocity, E, since
its temporal behavior tells us whento initiate a rendezvous maneuverand
its magnitude tells us the total cost. For an interception, this infor-
mation is contained in the error velocity E and its rate of change.

Obviously, we can generalize these results. For the general problem
that we have solved, we need to compute AV from equation (33) and
measure its rate of change d_V/dt. If _V is increasing at target
acquisition, then we apply immediately the initial impulse, _VI, for a
locally least-fuel rendezvous, given by equations (29) and (32) combined,
and effect a two-impulse rendezvous in the way described. If AV is
decreasing, then the situation is continually improving and the cost of
the rendezvous is continually diminishing, so we take no action. We
continue to take no action until the quantity d_V/dt becomeszero, in
other words, until _V becomesstationary. Then_before _V starts to
increase, we apply the optimum AVI. For the interception case, the
principle for economical interception maybe stated similarly to that
for rendezvous, with AV and d_V/dt replaced by the error velocity, F,
and its rate of change dF/dt.

The method for economical rendezvous is a muLti-impulse schemesince,
if the first _V1 is delivered in error, the guidance logic based upon
the continuous computation of AV and d_V/dt will call for an additional
impulse as soon as an error appears. To anticipate an off-course error,
and to attempt to correct it without using the guidance logic, mayresult
in a substantial increase _n the rendezvous fuel requirement. It is
appropriate therefore to csll this guidance logic the principle of least
action for economical rendezvous.
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To illustrate some of the advantages of this principle_ the results

contained in figure 3 have been prepared. In figure 3(a), a circular

target orbit of l_000-mile altitude and a coplanar interceptor are con-

sidered. The relative range_ relative velocity (which in this case is

also the instantaneous least-fuel velocity requirement for rendezvous),

and the error velocity are shown as functions of the time at which the

maneuver is initiated. For the time period considered_ the rendezvous

least-fuel requirement is shown to vary from about 3_000 feet per second

to a minimum of about 950 feet per second_ depending upon the time at

which we apply the initial rendezvous impulse. Observe that the minimum

in the AV curve occurs at a different time than that of the error

velocity. For the example shown in figure 3(a)_ the rendezvous was con-

sidered to be initiated at the time when _V was a minimum. After the

initial rendezvous has been applied _V becomes constant if the initial

impulse is delivered without error. If an error has occurred it can be

distinguished by the fact that AV is not constant following the impulse.

With the guidance logic discussed earlier 3 therefore_ we have a multi-

impulse scheme for economical rendezvous.

In figure 3(b)_ a similar set of results 2 is shown for the more

general case of a noncircular orbit and a noncoplanar interceptor. In

this case the difference between the relative velocity and the least-

fuel velocity requirement is displayed. It is noted_ however_ that for

situations near the point where the least-fuel requirement is a minimum

there is little difference between the two velocities. This result

indicates that the simplified analysis may be particularly useful for

the guidance in the final phases of a rendezvous maneuver when the compu-

tation time required in the solution of the guidance equations my be an

important consideration.

It should be noted that the results presented in figure 3 represent

only example situations. For this reason_ obviously, the initial as-

sumptions affect the magnitudes of the quantities involved. However_ the

analytic characteristics are independent of these assumptions.

A

4

4

8

CONCLUDING REMARKS

Some of the problems associated with the rendezvous of two space

vehicles have been considered. In this study_ the equations of relative

motion for rendezvous with impulsive velocity changes were developed and

solved for the case of a circular target orbit and for the case of motion

near the apsis of any conic target orbit. The maneuvers associated with

least-fuel interception_ least-fuel rendezvous 3 and least-energy rendez-

vous were determined from the solutions. The impulse requirement for

least-fuel interception was found to be relatively distinct; however 3
that associated with least-fuel rendezvous was not. For this reason it

2The rendezvous maneuvers are omitted for clarity but are similar

to figure 3(a).
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was indicated that the time required for a rendezvous maneuver often may

be shortened significantly from that for least fuel without incurring a

significant fuel penalty. It was further shown that an economical rendez-

vous depends not only upon the time taken for the rendezvous maneuver

from a given set of initial conditions; but in addition_ it depends on

the selection of the initiation point in the uncorrected relative motion.

From these considerations_ a guidance logic for economical rendezvous

was developed. This sytem of logic is a multi-impulse scheme depending

upon a priori knowledge of the target orbit parameters and on the measure-

ment of the relative range and relative velocity vectors following target

acquisition. With the aid of the results of the analysis several sample

rendezvous maneuvers were examined. It was found that the penalty for

commencing a rendezvous maneuver at a position significantly different

,from the optimum position may be substantial.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif._ Nov. 30, 1961
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APPENDIXA

PROPAGATIONOFERRORSAT LAUNCHINT0

MISSDISTANCEAT THETARGET

Consider a typical rendezvous situation in which the interceptor is
launched to burnout at the perigee of a transfer ellipse, and coasts,
in the ideal case, to an apogee cotangential with the target in its
orbit. Supposean error is madein the 'initial burnout conditions. How
does this influence the miss distance at the target? The relevant partial
derivatives of the transfer orbit are:

= r_r_
ro = (ro + rb)2Vb 4 To

b
(AI

r° : _bl 2 _I+2 o
(A2

_To = 3_ A/ro + rb (A3

A

4

4

8

TO .Ir:_--o_ rO + r b-_b= 3T° (A4Trb 2_

where rb is the radius and Vb the velocity of the interceptor at

booster cutoff; ro is the radius of the interceptor at the target and

To is the time taken for the coast along the Hohmann transfer ellipse

from rb to ro.

If, at burnout, the 3_ uncertainties in velocity, altitude,, and

time are 20 fps, 5 miles, and 2 seconds, and the nominal burnout altitude

is 70 miles, the following errors at the target are obtained for various

target altitudes, h:

h,miles

135 39

2oo 40

30o 4l

400 41

i000 47

s,miles y,miles

20

20

21

22

26
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where S is the 3a value for the miss distance at the target, and
y is the 3_ value for the uncertainty in altitude relative to the
target.
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APPENDIX B

GENERAL FIRST-ORDER SOLUTION TO THE

CIRCULAR TARGET ORBIT PROBLEM

In the case of a circular target orbit, the relative vector

equation of motion reduces to:

dt2
+2(ax_v R)+ _x(axr)=s +-

.... m

(BI)

where _R has the components x, y, z; _R the components _, y, z;

and _ the components O, O, w . Considering impulsive motion only,

we may set T _ O.

The scalar equations of motion are now:

- --2wy w2x = - _ x
r 3

+ 2wx _ w2 (y + ro ) : _ p_ (y + ro )
r 3

(_)

where

and

r 2 (l+2L+----ro2 ro

\

x2 + _ + z2_
ro2 /

(B3)

W2ro3 = (_)

If

SR2 _ x2 + _2 + z2
2

r o ro
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is small,

r-3__ro-3(l- 3 r-_o)

so that

and

~ w2z- _---X "_ -W2 X ) - _ Z __
r3 -- r

whence, to the first order of approximation,

_: = 2-,,@

_" = -W2Z

3y)

(B5)

Applying the boundary conditions at t = O, x = Xo, y = Yo,

z = Zo, _ = Xo, Y = Yo, and _ = Zo, we obtain the solutions,

x = (x°+2_2)+ (6wy° - 3_°)t - 2 Y-_° c°s wt - (6Y° - 4 _) sin"_tw

Y = Yo- 2 - Yo - 2 cos wt + -- sin wt
w

So
z = z o cos wt +-- sin wt

w

which are valid for small departures (S R : o(ro) ) from the target

location.

If we compute in negative time we are able to set x o = 0, Yo = 0,

and zo = 0 to obtain:
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XO _

W

x sin wt - 2y(l - cos wt)

8(1 cos wt) - 3wt sin wt

Yo _ 2x(l - cos wt) + y(4 sin wt - 3wt)

w 8(1 - cos wt) - 3wt sin wt

ZO _ Z

w sin wt

x
w

X sin wt + 2_ [7(1 - cos wt) - 3wt sin wt]

8(i - cos wt) - 3wt sin wt

_ -2x(l - cos w%) +_(4 sin wt - 3wt cos _t)

w 8(1 - cos wt) - 3wt sin wt

z cos wt
-- _ Z

w sin wt

A

4
4
8

Hence_ if initially the relative velocity vector at xl_ Yl, zl is

xl, Yl, z1_ we are able to compute the sum of the magnitudes, AV, of

the initial impulse. . ___.AVI= x - x I, Y - Yl, z - zl_ and the terminal

impulse Z_Vo = Xo_ Yo_ Zo that reduces the relative velocity vector at

the position O, O, 0 to zero, in terms of the time to rendezvous_

T = -t:

aV = AV l + AVo _ AV (_)

The resultant expression for _V is cumbersome and difficult to

handle analytically. However, we may approximate in the manner of

equations (29), with the quantity w replacing Wz_ in order to

determine the position at which to rendezvous and the time to take. The

actual impulses would then be determined by the exact equations (28),

alternatively expressed for circular orbits in the equations above, with
t = -T.
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